Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
2 Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
Recently, nonlinear photonics has attracted considerable interest. Among the nonlinear effects, second harmonic generation (SHG) remains a hot research topic. The recent development of thin film lithium niobate (TFLN) technology has superior performances to the conventional counterparts. Herein, this review article reveals the recent progress of SHG based on TFLN and its integrated photonics. We mainly discuss and compare the different techniques of TFLN-based structures to boost the nonlinear performances assisted by localizing light in nanostructures and structured waveguides. Moreover, our conclusions and perspectives indicate that more efficient methods need to be further explored for higher SHG conversion efficiency on the TFLN platform.
thin film lithium niobate second harmonic generation waveguide nanostructure 
Chinese Optics Letters
2021, 19(6): 060012
Huihui Lu 1,2†Zhongmin Wang 1,2†Zhijin Huang 1,2Jun Tao 1,2[ ... ]Zhe Chen 1,2
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
2 Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
3 e-mail: qiuwentao@jnu.edu.cn
4 e-mail: ttguanheyuan@jnu.edu.cn
An all-optical light–control–light functionality with the structure of a microfiber knot resonator (MKR) coated with tin disulfide (SnS2) nanosheets is experimentally demonstrated. The evanescent light in the MKR [with a resonance Q of 59,000 and an extinction ratio (ER) of 26 dB] is exploited to enhance light–matter interaction by coating a two-dimensional material SnS2 nanosheet onto it. Thanks to the enhanced light–matter interaction and the strong absorption property of SnS2, the transmitted optical power can be tuned quasi-linearly with an external violet pump light power, where a transmitted optical power variation rate ΔT with respect to the violet light power of 0.22 dB/mW is obtained. In addition, the MKR structure possessing multiple resonances enables a direct experimental demonstration of the relationship between resonance properties (such as Q and ER), and the obtained ΔT variation rate with respect to the violet light power. It verifies experimentally that a higher resonance Q and a larger ER can lead to a higher ΔT variation rate. In terms of the operating speed, this device runs as fast as 3.2 ms. This kind of all-optical light–control–light functional structure may find applications in future all-optical circuitry, handheld fiber sensors, etc.
Photonics Research
2018, 6(12): 12001137

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!